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Modelling Listeria monocytogenes contamination to improve 
surveillance in the agri-food industry
Natalie Commeau (natalie.commeau@gmail.com) 
INRA/AgroParisTech, UMR 518 MIA, Paris, France
ANSES, Laboratory for Food Safety, Maisons-Alfort, France

Agri-food companies are accountable for the quality of the products that they place on the market. One way to 
check this quality is to determine how contamination is distributed. A sampling plan would be a useful decision-
support tool. To determine the optimal batch sample size, we used an approach based on Bayesian decision theory 
for finished food products that minimises the average cost incurred by the manufacturer. Here, we used data on 
the presence of Listeria monocytogenes during the production of diced bacon. We built models to describe the  
L. monocytogenes concentration by taking into account various factors, we estimated parameters using Bayesian 
inference and then compared our models with real data. Finally, we developed a model to determine how to minimise 
the average costs incurred by a meat-processing company in the case of L. monocytogenes contamination in diced 
bacon. 

Within- and between-batch sampling 
Knowledge on contamination by pathogens in a food-processing 
plant is necessary for agri-food companies so that they can take 
appropriate actions to reduce contamination. To acquire this 
knowledge, analyses are necessary (e.g. counting or screening) 
on food products or surfaces. How should samples be taken 
at a given point in the production process? Should a sample 
be randomly chosen from the production line? Or should it be 
chosen randomly from each batch? These questions are not 
trivial because, according to the finished food product and 
the processing method, variability in contamination within and 
between batches can be very different. Figure 1 shows two 
hypothetical cases of distribution of contamination among 
several batches. In Figure 1a, the between-batch variability 
is much lower than the within-batch variability. In this case, 
randomly choosing a sample from the entire production line 
without considering batch identity is sufficient. However, if the 
distribution of contamination resembles that shown in Figure 
1b, sampling by batch is essential for determining whether a 
given batch is contaminated or not. Within- and between-batch 
variability has been studied recently (ILSI, 2010; Gonzales-
Barron and Butler, 2011).

We begin by defining the term ‘batch’. Although this term is 
used in everyday speech, it is not simple to define. According 
to European Commission Regulation (EC) No 2073/2005 
(Article 2), a batch is “a group or set of identifiable products 
obtained from a given process under practically identical 
circumstances and produced in a given place within one 
defined production period.” The definition given by the 
International Commission on Microbiological Specifications 
for Foods (ICMSF, 2002) begins by explaining that it is 
a quantity of food manufactured and handled in uniform 
conditions, but it goes further and indicates that this definition 
implies that the batch is homogeneous, e.g. the concentration 
of the contaminant follows a log-normal distribution. 
However, the ICMSF notes that batches do not always show 
homogeneous concentrations of microbial contaminants 
because microorganisms can be very heterogeneously 
distributed. The batch size should thus be adjusted according 
to the processing method. Nonetheless, statisticians 
modelling contamination must assume homogeneity to 
describe properly the distribution of contaminants in food 
production. Furthermore, the food business operator defines 
a ‘batch’ with respect to ensuring traceability and internal 
organisation. 

Determining the structure of contamination  
in the production of diced bacon
To determine the structure of contamination, we sampled 
pork breast after the massaging process in a factory that 
produces fresh diced bacon and in which we analysed the 
presence and concentration of Listeria monocytogenes. A 
batch was defined as all the pork breasts contained in one 
tumbler, the first step in the production process. In total, 
eight or nine pork breasts were taken from 12 different 
batches. For each pork breast 100 cm² of meat was sampled 
and analysed to screen for detection and enumeration of L. 
monocytogenes. With the protocols used here, the limit of 
detection was 0.01 colony-forming units (CFU)/cm², while 
the limit of quantification was 0.2 CFU/cm². The raw data 
(presence or absence of detection, number of colonies 
counted) are shown in Table 1.

Figure 1: Representation of the variability within and between 
batches. Each curve shows the distribution of contamination in a 
given batch (log CFU/g). In Figure 1a (left), the standard deviation 
of contamination in a batch is 1 log CFU/g and the standard 
deviation between is 0.3 log CFU/g. For Figure 1b (right), the 
between-batches standard deviation is equal to 1 log CFU/g and 
the within-batch standard deviation is equal to 0.2 log CFU/g.
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Table 1: Raw data for the detection (0=absence, 1=presence) 
and the counts (number of CFUs counted on Petri dishes) of  
L. monocytogenes conducted on 100 cm² pork breast samples 
after tumbling, i.e. the first step in the diced-bacon production 
process, during which bellies are tumbled with brine for several 
hours in a tumbler. The same sample was used for both 
detecting and counting L. monocytogenes.

Batch number Detection results Counting results (CFUs)

1 0-1-1-1-0-1-1-1-1 0-0-0-0-0-0-0-0-0

2, 8, 9 & 10 0-0-0-0-0-0-0-0-0 0-0-0-0-0-0-0-0-0

3 0-0-0-0-1-0-0-0-1 0-0-0-0-1-0-0-0-0

4 0-1-0-0-1-0-0-0-0 0-0-0-0-0-0-0-0-0

5 0-0-0-0-1-0-0-0-0 0-0-0-0-0-0-0-0-0

6 0-0-0-0-0-0-0-0 0-0-0-0-0-0-0-0

7 0-0-0-1-1-0-0-0-1 0-0-0-0-0-0-0-0-0

11 1-1-1-1-1-1-1-1 11-9-6-5-12-29-16-3

12 0-0-1-0-0-0-0-0-0 0-0-0-0-0-0-0-0-0

The results were used in four contamination models:
-- contamination structured by units and batches (model REF);
-- contamination structured by batch (model B);
-- contamination structured by food unit (model U);
-- contamination with no structure (model NS).

The food unit was the individual pork breast because we wished 
to determine whether there was within- and between-unit 
variability along with within and between-batch variability. We 
used a Bayesian approach, which allows the incorporation of 
information other than raw data into the model. 
All models include a combination of binomial, Poisson and 
normal distributions. Models NS, B and U are nested in model 
REF. 
In model REF, xijk is the detection result (1 if positive and 0 
otherwise) of batch i, pork breast j and test portion k; yijkl is 
the enumeration of batch i, pork breast j, test portion k and 
fraction l. A test portion is the sample of meat on which the 
experiments were carried out (here 100 cm²). A fraction is the 
volume of the solution composed of the test portion diluted in 
an appropriate culture broth that is poured onto a Petri dish to 
count L. monocytogenes colonies. Variable xijk follows a binomial 
distribution and variable yijk follow a Poisson distribution:

where θij is the logarithm to base 10 of the concentration of L. 
monocytogenes in pork breast j belonging to batch i; Sk is the 
surface of test portion k, and d is the dilution of the fraction l. 
The log concentration θij follows a normal distribution:

where zi is the log concentration of L. monocytogenes in batch 
i and λ is the standard deviation of the log concentration in 
the food units. The log concentration z i also follows a normal 
distribution:

where µ is the mean log concentration and σ is the standard 
deviation of the log concentration in batches. For the priors, 
parameter µ follows a normal distribution and σ² and λ² both 
follow an inverse gamma distribution.

There is no unit effect in model B, so λ=0. Conversely, there is 
no batch effect in model U, so σ=0. Model NS has neither of 
these effects, so λ=σ=0. Models B, U and NS are described 
in Table 2.

Table 2: Description of models B, U and NS. Subscripts i, j, k 
and l refer to a batch, a food unit (i.e. pork breast), a test portion 
and a fraction, respectively.

Model B Model U Model NS

To determine the parameters of the prior distributions, we used 
the self-inspection results that various companies carry out in 
the meat-processing industry. The posterior distributions of 
the parameters in the models were estimated using OpenBugs 
software (Thomas et al. 2006). According to the experimental 
protocol we carried out, Sk=100 cm² and dl=0.05. Quantiles 
of the posterior distributions of the four models are shown in 
Table 3.

Table 3: Descriptive statistics of the posterior distributions  
of models REF, B, U and NS. 

Model Parameter

Descriptive statistics of  
the posterior distributions

Mean S.D. 2.5th 
perc.

50th  
perc.

97.5th 
perc.

REF

µ -3.09 0.53 -4.25 -3.05 -2.15

σ 1.55 0.49 0.89 1.45 2.77

λ 0.38 0.08 0.25 0.36 0.57

B
µ -3.12 0.51 -4.21 -3.09 -2.18

σ 1.72 0.47 1.06 1.63 2.86

U
µ -3.51 0.15 -3.81 -3.51 -3.21

λ 1.99 0.24 1.59 1.97 2.51

NS µ -0.94 0.005 -0.95 -0.94 -0.93

S.D., standard deviation; perc., percentile

We investigated the ability of the models to replicate real data 
with a visual criterion based on data simulations: detection 
data were simulated using the posterior distributions of 
the parameters (same number of datasets per batch and 
same number of batches as for the observed data), then 
the proportions of batches with (1) only presences, (2) only 
absences, or (3) a mixture of presences and absences, were 
counted. This process was repeated n times to calculate 
the median and the credibility intervals at 50% and 95%. A 
credibility interval at x% indicates that there is an x% probability 
that a value is within the interval. The same process was then 
repeated for counting. The results are shown in Figure 2. The 
model that best replicated the data was model B. The model 
REF performed only slightly worse (not shown). Model B is the 
best of the four studied models. 3.
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Example illustrating the determination of the 
optimal sample size that minimises the costs for 
the company
Knowing the distribution of contamination helps to define a 
sampling strategy. However, sampling strategies must also 

consider the specific processing practices used in a given 
factory and the reasons for sampling. Several types of sampling 
plans are used in the agri-food industry. A widely used model 
is the two-class sampling plan: n products are sampled and 
screened (generally 25 g of finished product); if the number of 
positive results y exceeds a certain number c, then the batch is 
rejected (destroyed or sold for a different use); if not, the batch 
is delivered. A two-class plan assumes that the product is still 
in the factory when the results are made available, which is not 
always the case. To adapt this type of plan to bacon processing, 
we modified the definition of the sampling plan slightly. After 
discussion with an industry expert, we developed the following 
sampling plan:

-- sampling is not based on a production batch but on a certain 
production time period (e.g. 1 week or 1 month);

-- according to the number of positive results (x), three 
possible decisions are made by the processing plant: (1) 
do nothing; (2) take minor corrective actions because the 
prevalence of L. monocytogenes during the production 
period is intermediate; (3) take major corrective actions 
because contaminant prevalence is high.

Our goal was to determine the optimal sample size n as well as 
the thresholds c1 and c2, the values of x beyond which minor 
or major corrective actions, respectively, are taken. To achieve 
this goal, we used Bayesian decision theory. This theory was 
used to determine the best solution for an operator in situation 
of uncertainty. Application of this theory involves several steps:

-- determine the set D of all the possible decisions (here, the 
three decisions described above);

-- determine all the values S of the states of nature (here, 
contamination of pork breasts by L. monocytogenes) and 
the prior distributions;

-- determine the set of all the observations O (here, bacterial 
detection and counts) and their distributions;

-- define a so-called loss function L defined for D x S x O in ℝ+ 
(see below);

-- determine the best decision rule (function which associates 
a decision d with a set of observations), obtained by 
minimising the expected loss over the states of nature and 
the observables. 

For more information on this theory, see Berger (1985), Parent 
(2007) or Robert (2006).

According to contaminant prevalence in the batches of finished 
product sampled during the chosen period, the customer 
(distributor) can apply a penalty for non-compliance with 
specifications and order additional tests over a given period 
of time. The cost of the penalties depends on the level of 
prevalence (i.e. the higher the prevalence, the higher the cost 
of the penalty), but can be adjusted according to any corrective 
actions taken by the meat-processing company (i.e. if the 
company applies a corrective action, the penalty decreases). 
To keep the model simple, prevalence was divided into three 
classes: low, intermediate and high. We asked our expert to 
estimate the cost of these penalties and the corrective actions. 
These are summarised in Table 4.

Figure 2: Observed and simulated data for three models: (a) 
model B, (b) model U, and (c) model NS. The left-hand panel 
shows data for the detection method, and the right-hand panel 
data for the counting method. The histograms represent the 
average data for each group (0: proportion of batches with only 
null data, !=0: proportion of batches with only non-null data, 
and Other: all other batches). The grey error bar represents the 
credibility interval at 50% and the black error bar the credibility 
interval at 95%. The black dots indicate observed data.

Figure 2a

Figure 2b

Figure 2c
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Table 4: Costs incurred (in euros) by the meat-processing 
company according to contaminant prevalence in the finished 
product and the decision made.

Decision made

No action taken
Minor 

corrective 
action taken

Major 
corrective 

action taken

Actual results 
(Prevalence 

of 
contaminant)

Low prevalence €0 €4 250 €14 000

Intermediate 
prevalence €6 200 €6 110 €14 930

High 
prevalence €92 050 €31 900 €27 800

The cost of sampling, estimated at €20 by the expert, must be 
added to each of these costs. To complete the calculation, we 
determined the thresholds of prevalence: below 0.2, prevalence 
is considered to be low and above 0.6, it is considered to be 
high. Finally, the beta distribution of parameters 2 and 3 was 
used to describe prevalence (see Figure 3). A beta distribution 
on parameters α and β has a probability distribution function 

equal to , where . With this 
information, we can calculate the loss function which, for a 
given set of observations and value of contamination, there is 
an associated cost. The decision depends on the value of the 
observations; therefore knowing the observations automatically 
determines the decision to take.
Based on this information and according to prevalence and 
analysis results, we calculated the average cost per production 
period for the meat-processing company with respect to sample 
size. By varying sample size, we can determine the value that 
minimises the average cost. The average costs based on the 
chosen numerical values are shown in Figure 4 and depend 
only on sample size. The minimum value was found for n=16, 
c1=4 and c2=11.
The distribution and thresholds of prevalence were set to 
complete the exercise. Obviously, when they vary this leads 
to a change in the optimal sampling plan: with a prevalence 
following a beta distribution of parameters 2 and 20 and 
thresholds of prevalence of 0.05 and 0.1, the average minimum 
cost for the company is reached at n=48, c1=1 and c2=6, which 
differs greatly from the previous result. Similarly, if costs vary 
then so does the sampling plan.
The application of Bayesian decision theory provides additional 
support for the decision-maker particularly in situations with 
many unknowns. This approach requires defining the population 
to which the method will be applied (e.g. here, we defined 
‘batch’), modelling prevalence, defining the set of decisions 
and their possible consequences, determining the costs, and, 
finally, carrying out probabilistic calculations. The final values 
depend strongly on the model used and current costs, which 
means that they must be defined carefully for each application. 
For more information on this work, see Commeau (2012).

References
Berger J. 1985. Statistical decision theory and Bayesian analysis. 
Springer Verlag, New
York, second edition: 617 pp.
Commeau N, (2012). Modélisation de la contamination par Listeria 
monocytogenes pour l’amélioration de la surveillance dans les 
industries agro-alimentaires. PhD thesis, AgroParisTech. http://tel.
archives-ouvertes.fr/index.php?alsid=3euus0iet62q4s4jjf39p0e935&v
iew_this_doc=pastel-00770790&version=1
Gonzales-Barron U, Butler F. 2011. Characterisation of within-batch 
and between-batch variability in microbial counts in foods using 
Poisson-gamma and Poisson-lognormal regression models. Food 
Control, 22:1268–1278.
International Commission on Microbiological Specifications for Foods 
(ICMSF). 2002. Microorganisms in Foods 7: microbiological testing 
in food safety management. New-York, Kluwer academic/Plenum 
Publisher: 375 pp.
International Life Science Institute (ILSI). 2010. Impact of microbial 
distribution on food safety. 1-68.
Parent E, Bernier J. 2007. Le raisonnement bayésien. Springer Verlag, 
France: 327 pp.
Regulation (EC) no 2073/2005 of the European Commission on 
microbiological criteria for foodstuffs. Official Journal of the European 
Union L338:1-26.
Robert C. 2006. Le choix bayésien. Springer-Verlag, France: 639 pp.
Thomas, A., O’Hara, B., Ligges, U. and Sturtz, S. (2006). Making BUGS 
open. R News, 6:12–17.

Figure 3: Distribution of prevalence between the different 
production periods.
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Figure 4: Average cost (in euros) incurred by the meat-
processing company according to sample size n. The minimal 
cost is reached at n=16, c1=4 and c2=11 (red dot).
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