

Development of methodologies to be used for assessing exposure to multiple pesticides

Hermine Reich Senior Scientific Officer

Chemical mixtures: challenges for research and risk assessment 10/11 December 2013

- <u>2006</u> **EFSA's 7th Scientific Colloquium** Cumulative Risk Assessment of Pesticides to Human Health: The Way Forward <u>http://www.efsa.europa.eu/en/supporting/pub/117e.htm</u>
- 2008 Scientific Opinion to evaluate the suitability of existing methodologies and, if appropriate, the identification of new approaches to assess cumulative and synergistic risks from pesticides to human health with a view to set MRLs for those pesticides in the frame of Regulation (EC) 396/2005 http://www.efsa.europa.eu/en/efsajournal/pub/705.htm
- 2009 Scientific Opinion for a selected group of pesticides from the triazole group to test possible methodologies to assess cumulative effects from exposure through food from these pesticides on human health http://www.efsa.europa.eu/en/efsajournal/pub/1167.htm

2012 Guidance on the use of **probabilistic methodology for modelling** dietary exposure to pesticide residues <u>http://www.efsa.europa.eu/en/efsajournal/pub/2839.htm</u>

2013 Scientific Opinion on the identification of **pesticides to be included in cumulative assessment groups** on the basis of their toxicological profile <u>http://www.efsa.europa.eu/en/efsajournal/pub/3293.htm</u>

(Published on EFSA Website for public consultation – closed on 30 September)

- Evaluation of comments received during the public consultation on the Scientific Opinion on cumulative assessment groups (CAGs)
- Preparation of Scientific Opinion on the relevance of dissimilar mode of action and its appropriate application for cumulative risk assessment of pesticides residues in food
- Outsourced project on collection of data relevant for cumulative risk assessment (until end of 2015)
- Technical Meeting with stakeholders on cumulative risk assessment, 11 February 2014, EFSA, Parma
 - > aiming at information of and exchange with stakeholders

- Development of new format for reporting monitoring data on pesticide residues (SSD – Standard Sample Descriptor)
- Increased quantity and quality of monitoring data
- Establishment of the comprehensive food consumption data
- Development of EFSA PROFile (Pesticide Residue Overview File) to collect data in the framework of the MRL review in a structured format
- Development of EFSA PRIMo (Pesticide Residue Intake Model)
- Indicative cumulative risk assessment for OP pesticides and carbamates using PRIMo (deterministic approach) (see 2010 EU Report on Pesticide Residues)

Dietary risk assessment

Cumulative risk assessment: work packages

287 active substances were screened

Complete Com

- ✓ Nervous system (68 substances)
- ✓ Thyroid system (113 substances)
- o Liver
- o Kidney
- Adrenal gland
- o Eyes
- Developmental/reproductive toxicity

Cumulative assessment groups (CAGs)

CAG level 2: Common specific phenomenological effect (acute effects)

- Functional effects on motor division:
 - 45 pesticides
- Functional effects on sensory division:
 - > 21 pesticides
- Functional effects on autonomic division:
 - > 29 pesticides
- Neurochemical endpoints:
 - 15 pesticides

Cumulative assessment groups (CAGs)

CAG level 2: Common specific phenomenological effect (chronic effects)

Functional effects on motor division:

> 53 pesticides

- Functional effects on sensory division:
 - 22 pesticides
- Functional effects on autonomic division:
 - 24 pesticides
- Neurochemical endpoints:
 - 15 pesticides
- Neuropathological effects:
 - 21 pesticides

Cumulative assessment groups (CAGs)

CAG level 2: Common specific phenomenological effect (chronic effects)

- Effects on parafollicular cells or the calcitonin system:
 - 25 pesticides
- Substances affecting follicular cells and/or thyoroid hormone (T3/T4) system
 - > 98 pesticides

- Assessment of the remaining 5 CAGs (level 1)
- Assessment of non-approved substances ?
 (check first their relevance in terms of exposure, based on occurrence data)

Assessment of metabolites ?
 (check first the relevance – metabolism studies)

Monitoring data

- Since 2009 the monitoring results are reported at detailed level (individual determinations) using the SSD format, including a lot of background information
- Residue definition for enforcement
- 27 EU MS + NO, IC
- ca. 70.000 samples/year
- ca. 15 to 20 Mio determinations/year

Monitoring data

EUcoordinated Monitoring Programme

Ca. 12.000 samples

In 3 yr. cycle covers 30-40 food commodities

Ca. 180 pesticides **National Monitoring Programmes**

Ca. 300 different commodities (range from 12-170)

Less representative (geographical distribution)

Many commodities less than 10 samples

More than 900 different pesticides (range from 60-840)

Ca. 5 % Enforcement samples

Monitoring data – pesticides covered

Need to adapt scope of EU coordinated monitoring programme, considering the potency of the active substance and the likelihoods to find measurable residues ("significant contributors")

Cumulative exposure

Monitoring data

EU coordinated programme

National control programmes

Supervised field trials reflecting realistic worst case situation for critical GAPs STMRs / HRs for RAC, sometimes for edible portion Data reflecting residue definition for risk assessment and enforcement (parent compound and metabolites where relevant)

- Outdoor NEU / SEU /Third countries
- Indoor conditions

Monitoring data – Food types

Number of samples per commodity (EU coord. + national programmes)

APPLES	TABLE GRAPES	LETTUCE	MANDARINS	SPINACH	CATTL	E MILK	BABY F	OOD	BA	NANAS	;	PLU	MS
Apples	Table grapes	Lettuce	Mandarins	Spinach	Cattle m	ilk and mi	Baby fo	ood	Ba	ananas		Plur	ms
				LEMONS	COURGETT	ONION	IS HO	NEY	AUBER	GI H	EAD CA	с	EREA
	ORANGES	STRAWRERRIES	WINE GRAPES	Lemons	Courgettes	Onion	s Ho	iney	Aubergi	nes H	ead cal) Ce	ereal b
TOMATOES		SHUHDLING	Wine grapes		ΛΩΛΩΛ	MELONS	SWINE	FAT			PDING		CDRF
	Oranges	Strawberries		POULTRY ME	Asparagus	Melons	Swine	fat C	ultivated	Spi	ring oni.	Ras	pberri
Tomatoes			PEACHES	Poultry meat	SWINE LI	LENTIL Lentils, d	RYE Rye	MAN	G L/ oes La	AMB' mb's	TEA I Tea le	.E E	BROC Broccoli
	DEADS		Peaches	OLIVES (OIL	Swine liver		CELEDY	MAIZE	DEAC		<u> </u>		POVI
POTATOES	PEARS	CUCUMBERS		Olives (oil prod	CAULIFL	POULTR Poultry li	Celery	Maize	Peas	Ga	rlic P	ump	Bovi
	Pears	Cucumbers	BEANS (WITH PODS)	CHERRIES	Cauliflower	PINEAP	MILK Milk an		BEAN.	: Bea	N FR	MHer	BILUE:::
Potatoes			Beans (with pods)	Cherries	SWINE M	Pineapples	RADIS	Cele			Barl	Oats	;
				KIWI		CHICKE Chicken	rtauisti						KALE
WHEAT	PEPPERS	CARROTS	DICE	Kiwi	CURRAN		BOVIN Bovine				Basil	VvitI	
	Penners		RICE		Currants	LEEK Leek	BLAC	Poui		Okra		Wild.	Yams
Wheat	reppers	Carrots	Rice	GRAPEFRUIT	APRICOTS	SCADOLE	Віаскр	50WI					
				Grapefruit	Apricots	Scarole	Poultry						Clob

Food intake: relevance of food in the diet

MILK	WHEAT	POTATOES		APPLES			SWINE MEAT			
	Wheat	Potatoes		Apples			Swine meat			
		CUCUMBERS	BOVINE	MEAT		BA	NANA	s		
Milk		Cucumbers	Bovine		Bananas					
	RYE		BIRDS' EGGS	POULTRY M	T(DMATO	es	0A	TS	
			Birds' eggs	Pouttry mea	t i1	Tomatoes		O	Oats	
	Rye	CARROTS		OHIONS Onions	Table	BOVI			KIWI	
		Carrots	PEARS	MELONS Melons PEPPERS Peppers	Oran	Stra				
			Pears		Orari.	RICE			T	
					LETT Lettuce				H	

Monitoring data results: determination level

Monitoring data results: sample level

All commodities covered by EU coordinated programme

Monitoring data results: sample level

Monitoring data results: MS/sample level

Monitoring data: Contribution of individual commodities to total exposure

Intake in % of ADI

Occurrence data

- Which food commodities need to be considered?
- Which occurrence data should be used ?
 - Monitoring data
 - EU coordinated programme
 - National monitoring programmes
 - Supervised field trials
- How to fill the gaps for pesticides not sufficiently covered by the monitoring programmes
- How to trim the data ?
 - Non-detects?
 - MRL exceedences?
 - Conversion factors for risk assessment ?

- Data trimming replacement/complement occurrence data
- Identify need for further data collection
 - Authorisation status
 - % crop treatment
 - Processing data
- Transparent handling of data, documentation of manipulation
- Identify limitations of available data, uncertainty of estimations

EFSA comprehensive food consumption database

Dietary surveys	32
Member States	22
Number of subjects	66,492
Number of different foods	63,495
Number of different FoodEx codes	1,504
Number of consumption records	6,309,489

The Comprehensive Database will be updated in 2014 with the addition of <u>10 new surveys</u>. A Call for proposals is currently out for the 2014 update.

Examples of differences in survey methodology:

- 24 h dietary recall vs. food record
- broad survey period, from 1997 (Estonia) to 2009 (Spain)
- from 1 to 7 days per subject
- individual vs. household sample unit
- from 28% to 98% response rate
- week end days not evenly represented in 6 surveys
- seasonality not fully covered in 10 surveys (only one season represented in 4 surveys)
- body weight and height measured or estimated
- <u>food classification</u>

Age class	Age range		Number of surveys	Number of countries		
Infants	0 - 12	months	2	2		
Toddlers	12 - 36	months	8	8		
Children	3 - 10	years	16	14		
Adolescents	10 - 18	years	14	12		
Adults	18 - 65	years	21	20		
Elderly	65 - 75	years	9	9		
Very elderly	> 75	years	8	8		
Total			78 diets	22 MS		

Number of different FoodEx codes: 1,504

- Unprocessed food
- Processed food
- Composite food

edible portion

Number of commodities for which monitoring data are available: ca. 300

- Mainly unprocessed food
- Results reported for commodity as described in Annex I of Regulation (EC) No 396/2005 (e.g. orange with peel)

European Food Safety Authority **Raw Agricultural** Food as **Commodity (RACs)** consumed edible portion List of ingredients and proportions Conversion Individual factors ingredient

Food as consumed vs. RACs

Conditions of use

- EFSA has the right to use raw individual food consumption data for carrying out risk assessments and other scientific analyses within the activities related to EFSA's mandate.
- A formal authorization from the data provider must be requested for any other use of the data.

Comprehensive food consumption data

- Which are the representative diets to perform cumulative exposure assessments ?
 - Which age groups?
 - Which geographic regions?
 - Specific groups (e.g. vegetarians, breastfeeding women)?
- Which recipe data to use for calculation of ingredients?
- Can we use a standard conversion model to derive food consumption expressed in edible portion of raw agricultural commodity for aggregation of the consumption data ?
- How to do refined calculations for processed food ?
- Legal questions: permission to use consumption data

Which tool should be used for the calculation ?

Which tool should be used for the calculation ?

Criteria

- Performance of the tool:
 - Number of pesticides in CAG
 - Number of CAG
 - Number of diets
 - Number of commodities

- Tool should be accessible for risk assessors and stakeholders
- Flexibility: possibility to adapt the tool for needs
- Clarity: documentation how the calculations are performed
- Costs

Concluding remarks

- Implementation of cumulative risk assessment is an iterative process
- Need to gain experience
- Identify the relevant questions that have to be solved
- Close dialogue with risk managers to address their needs
 - Protection goal
 - Level of uncertainty
- Need to be transparent how the calculations are performed ; uncertainties and limitations of calculation
- Regular evaluation of guidance implementation is needed

Too many cooks spoil the broth

Thanks for your attention !